A Survey on Deep Reinforcement Learning

PhD Qualifying Examination

Siyi Li

Supervisor:
Prof. Dit-Yan Yeung

2017-01-13
Background

• Deep learning methods have making major advances in solving many low-level perceptual tasks.

See (visual object recognition) Read (text understanding) Hear (speech recognition)
Background

• More sophisticated tasks that involve decision and planning require an higher level of intelligence.

• Real Artificial Intelligence system also requires the ability of reasoning, thinking and planning.
Limitations of Deep Learning

• Supervised learning assumptions
 • Training and testing instances are i.i.d variables
 • Training data are labeled data with strong supervision

• Reality of most real-world tasks
 • Strong supervision is expensive and scarce
 • Sequential interactive process violates the i.i.d assumption
Reinforcement Learning (RL) in a nutshell

• RL is a general-purpose framework for decision making
 • RL is for an agent to act with an environment
 • Each action influences the agent’s future state
 • Feedback is given by a scalar reward signal
 • Goal: select actions to maximise future reward
Deep RL: Deep Learning + RL

- Traditional RL action approaches have been limited to domains with low-dimensional state spaces or handcrafted features.
- By combining deep learning and RL, we want to embrace both the representation power of deep learning and generalization ability from RL.
 - RL defines the objective.
 - Deep Learning learns the representation.
Outline

• Introduction to Deep Learning
• Introduction to Reinforcement Learning (RL)
• Value-Based Deep RL
• Policy-Based Deep RL
• Other Deep RL Extensions
• Deep RL Applications
Deep Representations

• A deep representation is a composition of many functions, where each composition level is learning representations at different level of abstraction

\[x \rightarrow h_1 \rightarrow \ldots \rightarrow h_n \rightarrow y \rightarrow l \]

\[w_1 \quad \ldots \quad w_n \]

• The weights are learned using backpropagation by chain rule
Deep Neural Network

• A deep neural network typically consists of:
 • Linear transformations
 \[h_{k+1} = Wh_k \]
 • Nonlinear activation functions
 \[h_{k+1} = \sigma(h_k) \]
 \[\sigma(\cdot) = \tanh(\cdot), \frac{1}{1 + \exp(\cdot)}, \ldots \]
 • Loss function on the output
 • Mean squared error: \[l = \|y - y^*\|^2 \]
 • Log likelihood: \[l = \log P(y^*) \]
Training by Stochastic Gradient Descent

• Sample gradient of expected loss $L(w) = \mathbb{E}[l]$ (better efficiency for large data)

$$\frac{\partial l}{\partial w} \sim \mathbb{E} \left[\frac{\partial l}{\partial w} \right] = \frac{\partial L(w)}{\partial w}$$

• Adjust w down the sampled gradient
Deep Learning Models

• Multilayer perceptrons (MLPs)
 • Fully-connected

• Convolutional neural networks (CNNs)
 • Weight sharing between local regions

• Recurrent neural networks (RNNs)
 • Weight sharing between time-steps
Outline

• Introduction to Deep Learning
• Introduction to Reinforcement Learning (RL)
• Value-Based Deep RL
• Policy-Based Deep RL
• Other Deep RL Extensions
• Deep RL Applications
Markov Decision Processes (MDPs)

• MDPs formally describe an environment for RL, where the environment is fully observable

Definition

An MDP is a tuple \((\mathcal{S}, \mathcal{A}, f, R)\) consisting of:

- \(\mathcal{S}\): The state space. In MDPs, the state is a sufficient statistic of the future.
- \(\mathcal{A}\): The action space.
- \(f: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \mapsto [0, \infty)\): The state transition probability density function.

\[
P(s_{k+1} \in S_{k+1} | s_k, a_k) = \int_{S_{k+1}} f(s_k, a_k, s') ds'
\]

- \(R: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \mapsto \mathbb{R}\): The reward function.

\[
r_k = R(s_k, a_k, s_{k+1})
\]
Policy

A policy is the behavior of the agent.

- Stochastic policy $\pi: S \times A \mapsto [0, \infty)$.

 $$P(a|s) = \pi(s, a)$$

- Deterministic policy $\pi: S \mapsto A$.

 $$a = \pi(s)$$
Expected Return

• The goal of RL is to find the policy which maximizes the expected return

\[J(\pi) = \mathbb{E}\{g(r_0, r_1, \ldots) | \pi\}. \]

• In most cases, the function \(g \) is either the discounted sum of rewards or the average reward

• Discounted reward

\[g(r_0, r_1, \ldots) = \sum_{k=0}^{\infty} \gamma^k r_k \]

• Average reward

\[g(r_0, r_1, \ldots) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} r_k \]
Value Function

• Consider the discounted reward case

\[J(\pi) = \mathbb{E} \left\{ \sum_{k=0}^{\infty} \gamma^k r_k \ \bigg| \ d_0, \pi \right\} \]

\[= \int_{\mathcal{S}} d^\pi(s) \int_{\mathcal{A}} \pi(s, a) \int_{\mathcal{S}} f(s, a, s') R(s, a, s') ds' dads \]

\[d^\pi(s) = \sum_{k=0}^{\infty} \gamma^k p(s_k = s | d_0, \pi) \]

• A value function is the prediction of the above expected return

• Two definitions exist for the value function

 • State value function

 \[V^\pi(s) = \mathbb{E} \left\{ \sum_{k=0}^{\infty} \gamma^k r_k \ \bigg| \ s_0 = s, \pi \right\} \]

 • State-action value function

 \[Q^\pi(s, a) = \mathbb{E} \left\{ \sum_{k=0}^{\infty} \gamma^k r_k \ \bigg| \ s_0 = s, a_0 = a, \pi \right\} \]
Bellman Equation and Optimality

• Value functions decompose into Bellman equations, i.e., the value functions can be decomposed into immediate reward plus discounted value of successor state
 \[V^\pi(s) = \mathbb{E}\left\{ R(s, a, s') + \gamma V^\pi(s') \right\} \]
 \[Q^\pi(s, a) = \mathbb{E}\left\{ R(s, a, s') + \gamma Q^\pi(s', a') \right\} \]

• An optimal value function is the maximum achievable value.
 \[V^*(s) = \max_{\pi} V^\pi(s) \quad Q^*(s, a) = \max_{\pi} Q^\pi(s, a) \]

• Optimality for value functions are governed by the Bellman optimality equations.
 \[V^*(s) = \max_{a} \mathbb{E}\left\{ R(s, a, s') + \gamma V^*(s') \right\} \]
 \[Q^*(s, a) = \mathbb{E}\left\{ R(s, a, s') + \max_{a'} \gamma Q^*(s', a') \right\} \]
Approaches to RL

- **Critic-Only** Methods
 - Learnt value function
 - Implicit policy
- **Actor-Only** Methods
 - No value function
 - Learnt policy
- **Actor-Critic** Methods
 - Learnt value function
 - Learnt policy

Actor and *critic* are synonyms for the *policy* and *value* function.
Critic-Only

• A value function defines optimal policy.
• In critic-only methods, policy can be derived by selecting greedy actions

\[
\pi^*(s) = \arg \max_a \mathbb{E} \{ R(s, a, s') + \gamma V^*(s') \}
\]

\[
\pi^*(s) = \arg \max_a Q^*(s, a).
\]

• Finding optimal policy from state-action value function is direct.
• Finding optimal policy from state value function is more complicated (requires the knowledge of transition model)
Critic-Only

- Dynamic programming-based methods
 - Policy iteration
 - Value iteration
- Monte Carlo (MC) methods
- Temporal difference (TD) learning methods
 - TD(λ)
 - Q-learning
 - SARSA
Dynamic Programming (DP)

• DP methods require a model of the state transition density function f and the reward function R to calculate the state value function

• DP is model-based

• Policy evaluation: updates the value function for the current policy

• Policy improvement: improve the policy by acting according to the current value function

• Typical methods:
 • Policy iteration
 • Alternates between policy evaluation and policy improvement
 • Value iteration
 • No explicit policy
 • Directly update value function
Monte Carlo Methods

• MC methods learn directly from episodes of experience
• MC is model-free: no knowledge of transitions/rewards
• MC learns from complete episodes.
 • All episodes must terminate
• MC uses simple idea: empirical mean return
• The estimates are unbiased but have high variance.
Temporal Difference (TD) Learning

• TD methods learn directly from episodes of experience
• TD is model-free: no knowledge of transitions/rewards
• TD learns from incomplete episodes, it can learn online after every step
• TD uses temporal errors to update value function

\[V'(s) = V(s) + \alpha (R(s, a, s') + \gamma V(s') - V(s)) \]

\[Q'(s, a) = Q(s, a) + \alpha (R(s, a, s') + \gamma Q(s', a') - Q(s, a)) \] \hspace{1cm} \text{SARSA}

\[Q'(s, a) = Q(s, a) + \alpha \left(R(s, a, s') + \gamma \max_{a'} Q(s', a') - Q(s, a) \right) \] \hspace{1cm} \text{Q-learning}

• The estimates are biased but have low variance.
Actor-Only

- Critic-only methods do not scale well to high-dimensional or continuous action spaces, since selecting greedy actions is computationally intensive.

- Actor-only methods work with a parameterized family of policies over which optimization procedures can be used directly.

- Advantages
 - Better convergence properties
 - Effective in high-dimensional or continuous action spaces
 - Can learn stochastic policies

- Disadvantages
 - Evaluating a policy is inefficient and of high variance
Policy Gradient

• Given policy π_θ with parameters θ, the goal is find best θ to maximize the expected return

• Can use gradient descent

$$\theta_{k+1} = \theta_k + \alpha_{a,k} \nabla_\theta J(\theta_k)$$

• Policy gradient

$$\nabla_\theta J(\theta) = \frac{\partial J}{\partial \pi_\theta} \frac{\partial \pi_\theta}{\partial \theta}$$

• How to estimate the policy gradient?
 • Finite-difference methods
 • Likelihood ratio methods
Finite-Difference Methods

• Idea is simple, i.e., to vary the policy parameterization by small increments and evaluate the cost by rollouts

• Estimate k-th partial derivative of object function

\[
\frac{\partial J(\theta)}{\partial \theta_k} \approx \frac{J(\theta + \epsilon u_k) - J(\theta)}{\epsilon}
\]

• Simple, works even if policy is not differentiable

• Noisy, inefficient
Likelihood Ratio Methods (REINFORCE)

• We can formulate the expected return from the view of trajectories generated by rollouts

 \[\tau \sim p(\tau | \theta) \quad J^\tau = \sum_{k=0}^{H} \gamma^k r_k \quad J(\theta) = \int_{T} p(\tau | \theta) J^\tau d\tau \]

• Use likelihood ratios to compute the policy gradient

 \[
 \nabla_\theta J(\theta) = \int_{T} \nabla_\theta p(\tau | \theta) J^\tau d\tau \\
 = \int_{T} p(\tau | \theta) \nabla_\theta \log p(\tau | \theta) J^\tau d\tau \\
 = \mathbb{E} \left\{ \nabla_\theta \log p(\tau | \theta) J^\tau \right\}. \\
 \nabla_\theta \log p(\tau | \theta) = \sum_{k=0}^{H} \nabla_\theta \log \pi_\theta(s_k, a_k) \\
 \nabla_\theta J(\theta) = \mathbb{E} \left\{ \left(\sum_{k=0}^{H} \nabla_\theta \log \pi_\theta(s_k, a_k) \right) J^\tau \right\}
 \]

Do not need to compute the system dynamics
Likelihood Ratio Methods (REINFORCE)

- The above computation of policy gradient can be further reduced by replacing the trajectory return by the state-action value function

\[\nabla_\theta J(\theta) = \mathbb{E} \left\{ \sum_{k=0}^{H} \nabla \log \pi_\theta(s_k, a_k) Q^\pi(s_k, a_k) \right\} \]

- The trajectory return or the state-action value can be estimated by the return \(v_t \) obtained from Monte Carlo rollouts
- Thus the estimated policy gradient may have large variance
- In practice, subtracting a baseline from the trajectory return or the state-action value helps a lot
Actor-Critic

• Critic-only
 • Pros: low variance
 • Cons: difficult for continuous action domains

• Actor-only
 • Pros: easy to handle continuous actions
 • Cons: high variance

• Actor-critic combines the advantages of actor-only and critic-only methods
 • Actions are generated by the parameterized actor
 • The critic supplies the actor with low variance gradient estimates
Policy Gradient Theorem

• Actor-critic methods rely on the following policy gradient theorem

Theorem

(Policy Gradient): For any MDP, in either the discounted reward or average reward setting, the policy gradient is given by

$$\nabla_{\theta} J(\theta) = \int_{S} d^{\pi}(s) \int_{A} \nabla_{\theta} \pi_{\theta}(s, a) Q^{\pi}(s, a) \text{d}a \text{d}s$$

with $d^{\pi}(s)$ defined for the appropriate reward setting.

• The above theorem shows the relationship between the policy gradient and the exact critic function.
Policy Gradient With Function Approximation

- The following theorem shows that the state-action value function can be approximated with a certain function, without affecting the unbiasedness of the policy gradient estimate

\[(Policy \ Gradient \ with \ Function \ Approximation): \text{If the following two conditions are satisfied:}\]

1. Function approximator \(h_w \) is compatible to the policy

\[
\nabla_w h_w(s, a) = \nabla_\theta \log \pi_\theta(s, a),
\]

2. Function approximator \(h_w \) minimizes the following mean-squared error

\[
\varepsilon = \int_S d^\pi(s) \int_A \pi_\theta(s, a) \left\{ (Q^\pi(s, a) - h_w(s, a))^2 \right\},
\]

where \(\pi_\theta(s, a) \) denotes the stochastic policy, parameterized by \(\theta \), then

\[
\nabla_\theta J(\theta) = \int_S d^\pi(s) \int_A \nabla_\theta \pi_\theta(s, a) h_w(s, a) \, da,\]

\]
Reducing Variance Using a Baseline

- The policy gradient theorem generalizes to the case where a state-dependent baseline function is taken into account. This can reduce variance, without changing expectation.

\[
\mathbb{E}_{\pi_\theta} \{ \nabla_\theta \pi_\theta(s, a) b(s) \} = \int_S d\pi(s) \int_A \nabla_\theta \pi_\theta(s, a) b(s) dads \\
= \int_S d\pi(s) b(s) \nabla_\theta \int_A \pi_\theta(s, a) dads = 0
\]

\[
\nabla_\theta J(\theta) = \int_S d\pi(s) \int_A \nabla_\theta \pi_\theta(s, a) [h_w(s, a) - b(s)] dads
\]

- A good baseline is the state value function.

- The policy gradient can be formulated by both the Q function and the advantage function:

\[
A^{\pi_\theta}(s, a) = Q^{\pi_\theta}(s, a) - V^{\pi_\theta}(s)
\]

\[
\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} [\nabla_\theta \log \pi_\theta(s, a) A^{\pi_\theta}(s, a)]
\]
Standard Actor-Critic Algorithms

• If both conditions in the above theorem are met, then the resulting algorithm is equivalent to the REINFORCE algorithm.

• Practical actor-critic algorithms often relax the second condition: use TD learning to update the critic approximator.

• TD(0) actor-critic

\[
\delta_k = r_k + \gamma V_{w_k}(s_{k+1}) - V_{w_k}(s_k) \\
w_{k+1} = w_k + \alpha_{c,k}\delta_k \nabla w V_{w_k}(s_k) \\
\theta_{k+1} = \theta_k + \alpha_{a,k}\delta_k \nabla \theta \log \pi_\theta(s_k, a_k)
\]

• The TD error is actually an estimate of the advantage function.
Practical Actor-Critic Variants

• The policy gradient has many equivalent forms

\[
\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[\nabla_\theta \log \pi_\theta(s, a) \ n_t \right] \\
= \mathbb{E}_{\pi_\theta} \left[\nabla_\theta \log \pi_\theta(s, a) \ Q^w(s, a) \right] \\
= \mathbb{E}_{\pi_\theta} \left[\nabla_\theta \log \pi_\theta(s, a) \ A^w(s, a) \right] \\
= \mathbb{E}_{\pi_\theta} \left[\nabla_\theta \log \pi_\theta(s, a) \ \delta \right]
\]

REINFORCE
Q Actor-Critic
Advantage Actor-Critic
TD Actor-Critic
Natural Policy Gradient

• The vanilla gradient is sensitive to policy parameterizations
• The natural policy gradient is parameterization independent
• It finds ascent direction that is closest to vanilla gradient, when changing policy by a small, fixed amount

\[\nabla_{\theta}^{\text{nat}} \pi_{\theta}(s, a) = G_{\theta}^{-1} \nabla_{\theta} \pi_{\theta}(s, a) \]

\[G_{\theta} = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a)^T \right] \]

• Natural policy gradient methods converges faster in most practical cases. However, estimating the FIM may induce large computation cost

Fisher information matrix (FIM)
Natural Actor-Critic

• Using compatible function approximation

\[\nabla_w A_w(s, a) = \nabla_{\theta} \log \pi_{\theta}(s, a) \]

• The natural policy gradient is then

\[\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) A_{\pi_{\theta}}(s, a)] \]

\[= \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a)^T w \right] \]

\[= G_{\theta} w \]

\[\nabla_{\theta}^{nat} J(\theta) = w \]
Deep Reinforcement Learning

• Use deep neural networks to represent
 • Value function
 • Policy

• Optimize loss function by stochastic gradient descent
Outline

• Introduction to Deep Learning
• Introduction to Reinforcement Learning (RL)
• Value-Based Deep RL
• Policy-Based Deep RL
• Other Deep RL Extensions
• Deep RL Applications
Q-Networks

• Represent the state-action value function by Q-network with weights w

$Q_w(s, a) \approx Q^*(s, a)$

$Q_w(s, a)$

$Q_w(s, a1) \cdots Q_w(s, a_m)$
Q-Learning

• Optimal Q-values obey Bellman equation

\[Q^*(s, a) = \mathbb{E}_{s'} \left\{ r + \gamma \max_{a'} Q(s', a') | s, a \right\} \]

• Treat right-hand size as a target and minimize MSE loss by SGD

\[l = \left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a) \right)^2 \]

• Converge guarantee using table lookup representation

• But diverges using neural networks due to
 • Correlations between samples
 • Non-stationary targets
Deep Q-Networks (DQN)

• Experience replay
 • Build data set from agent’s own experience
 • Sample experiences uniformly from data set to remove correlations

\[
\begin{array}{c|c}
 s_1, a_1, r_2, s_2 \\
 s_2, a_2, r_3, s_3 \\
 s_3, a_3, r_4, s_4 \\
 \vdots \\
 s_t, a_t, r_{t+1}, s_{t+1} \\
\end{array}
\rightarrow \begin{array}{c}
 s, a, r, s' \\
\end{array}
\]

• Target Network
 • To deal with non-stationarity, target parameters $\hat{\theta}$ are held fixed

\[
l = \mathbb{E}_{(s, a, r, s') \sim U(D)} \left\{ \left(r + \gamma \max_{a'} Q_{\hat{\theta}}(s', a') - Q_w(s, a) \right)^2 \right\}
\]
Double DQN

• Q-learning is known to overestimate state-action values
 • The max operator uses the same values to select and evaluate an action
 \[Q^*(s, a) = \mathbb{E}_{s'} \left\{ r + \gamma \max_{a'} Q(s', a') \mid s, a \right\} \]

• The upward bias can be removed by decoupling the selection from the evaluation
 • Current Q-network is used to select actions
 • Older Q-network is used to evaluate actions

\[l = \mathbb{E}_{(s, a, r, s') \sim U(D)} \left\{ \left(r + \gamma \max_{a'} Q_{\hat{W}_i}(s', a) - Q_{W_i}(s, a) \right)^2 \right\} \]
Prioritized Replay

- Uniform experience replay samples transitions regardless of their significance
- Can weight experience according to their significance
- Prioritized replay store experience in priority queue according to the TD error
 \[r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a) \]
- Use stochastic sampling to increase sample diversity
 \[P(i) = \frac{p_i^\alpha}{\sum_k p_k^\alpha} \]
 \[p_i = |\delta_i| + \epsilon \]
Dueling Network

• Dueling network splits Q-network into two channels
 • Action-independent value function $V(s)$
 • Action-dependent advantage function $A(s, a)$

• The two stream are aggregated to get the Q function

$$Q(s, a; \beta, w_1, w_2) = V(s; \beta, w_1) + \left(A(s, a; \beta, w_2) - \max_{a'} A(s, a'; \beta, w_2) \right)$$
Deep Recurrent Q-Network (DRQN)

• DQNs learn a mapping from a limited number of past states.
• Most real world environments are Partially-Observable Markov Decision Process (POMDP)
• DRQN replaces DQN’s first fully connected layer with a LSTM (one variant of RNN)
Asynchronous Q-Learning Variations

- Asynchronous RL
 - Exploits multithreading of standard CPU
 - Execute many instances of agent in parallel
 - Parallelism decorrelates data
 - Thus an alternative to experience replay, which is memory inefficient
 - Network parameters shared between threads

- Asynchronous one-step Q-learning

- Asynchronous one-step SARSA

- Asynchronous n-step Q-learning

\[r + \gamma Q(s', a') \]

\[r_t + \gamma r_{t+1} + \cdots + \gamma^{n-1} r_{t+n-1} + \max_a \gamma^n Q(s_{t+n}, a) \]
Outline

• Introduction to Deep Learning
• Introduction to Reinforcement Learning (RL)
• Value-Based Deep RL
• Policy-Based Deep RL
• Other Deep RL Extensions
• Deep RL Applications
Asynchronous Advantage Actor-Critic (A3C)

• Estimate state value function by neural networks
 \[V_w(s) \approx \mathbb{E}\{r_{t+1} + \gamma r_{t+2} + \cdots | s\} \]

• Q-value estimated by an n-step sample
 \[q_t = r_{t+1} + \gamma r_{t+2} + \cdots + \gamma^{n-1} r_{t+n} + \gamma^n V_w(s_{t+n}) \]

• Actor is updated by advantage policy gradient
 \[\nabla_{\theta} J(\theta) = \nabla_{\theta} \pi_{\theta}(s_t, a_t)(q_t - V_w(s_t)) \]

• Critic is updated by TD learning
 \[l_v = (q_t - V_w(s_t))^2 \]
Trust Region Policy Optimization (TRPO)

• Formulated as a trust region optimization problem, where each update of the policy is guaranteed to improve

\[
\max \ L_{\pi_{\theta_{\text{old}}}} (\pi_{\theta}) \quad \text{subject to} \quad D_{KL}(\pi_{\theta_{\text{old}}} || \pi_{\theta}) \leq \delta
\]

\[
L_{\pi} (\tilde{\pi}) = J(\pi) + \int_S d^{\pi}(s) \int_A \tilde{\pi}(s, a) A^{\pi}(s, a)
\]

• This provides a unifying perspective on a number of policy update schemes: standard policy gradient, natural policy gradient

\[
\max \ \theta \quad \left[\nabla_{\theta} L_{\pi_{\theta_{\text{old}}}} (\pi_{\theta}) \right|_{\theta=\theta_{\text{old}}} (\theta - \theta_{\text{old}})
\]

\[
\text{subject to} \quad \frac{1}{2} (\theta_{\text{old}} - \theta)^T F(\theta_{\text{old}}) (\theta_{\text{old}} - \theta) \leq \delta
\]

\[
F(\theta_{\text{old}})_{ij} = \frac{\partial}{\partial \theta_i} \frac{\partial}{\partial \theta_j} \mathbb{E} \{D_{KL}(\pi_{\theta_{\text{old}}}(s, \cdot) || \pi_{\theta}(s, \cdot))\}
\]

subject to \(\frac{1}{2} \|\theta - \theta_{\text{old}}\|^2 \leq \delta \)

First order approximation to the objective

Standard policy gradient

Natural policy gradient
Practical TRPO Algorithm

• Use the same approximation schemes as the natural policy gradient

• TRPO enforces the constraint by line search
 • Increases stability in practice

• Use a conjugate gradient algorithm to compute the natural gradient direction
 • Makes it practical for deep neural network policies
Deep Deterministic Policy Gradient (DDPG)

• Deterministic policy gradient

\[\nabla_{\theta} J(\pi_{\theta}) = \int_{S} d^\pi(s) \nabla_{a} Q^\pi(s, a)\big|_{a=\pi_{\theta}(s)} \nabla_{\theta} \pi_{\theta}(s) ds \]

• DDPG is the continuous analogue of DQN
 • Experience replay
 • Critic estimates value of current policy as in DQN
 \[l_w = (r + \gamma \tilde{Q}(s', \pi_{\hat{\theta}}(s'))) - Q_w(s, a))^2 \]
 • Actor updates policy in the deterministic policy gradient direction
 \[\nabla_{a} Q_w(s, a)|_{s=s_t, a=\pi_{\theta}(s_t)} \nabla_{\theta} \pi_{\theta}(s)|_{s=s_t} \]
 • The critic provides loss function for the actor
Outline

• Introduction to Deep Learning
• Introduction to Reinforcement Learning (RL)
• Value-Based Deep RL
• Policy-Based Deep RL
• Other Deep RL Extensions
• Deep RL Applications
Continuous Q-Learning

• General Q function parameterizations are difficult to find the maximum

• Specific Q function parameterizations can have analytic solution on the maximum
 \[A(s, a; w^A) = -\frac{1}{2} (a - \mu(s; w^\mu))^T P(s; w^p) (a - \mu(s; w^\mu)) \]
 \[Q(s, a; w^A, w^V) = A(s, a; w^A) + V(s; w^V) \]

• The action that maximizes the Q function is always \(\mu(s; w^\mu) \)

• The parameterization can then be trained by DQN
Q-Learning with Model-Based Acceleration

• Use model-based methods to generate exploration behavior for Q-learning
 • In practice it often brings very small or no improvement
 • Off-policy model-based exploration is too different from the Q-learning policy

• Imagination rollouts
 • Generate synthetic experiences under a learned model by model-based methods
 • Adding synthetic samples to replay buffer
 • Increases sample efficiency in practice
Guided Policy Search (GPS)

• GPS converts policy search into supervised learning
• Basically a model-based trajectory optimization algorithm generates training data to supervised train the neural network policy
• To enforce convergence, GPS alternates between trajectory optimization and supervised learning
• GPS is data efficient
Outline

• Introduction to Deep Learning
• Introduction to Reinforcement Learning (RL)
• Value-Based Deep RL
• Policy-Based Deep RL
• Other Deep RL Extensions
• Deep RL Applications
Deep RL in Atari
DQN in Atari

- End-to-end learning of state-action values from raw pixels
- Input state is stack of raw pixels from last 4 frames
- Output is state-action values from all possible actions
- Reward is change in score for that step
DQN Results in Atari

- Video Pinball: 2332%
- Boxing: 779%
- Breakout: 41%
- Star Gunner: 491%
- Robotank: 508%
- Atlantis: 419%
- Crazy Climber: 400%
- Gopher: 294%
- Demon Attack: 278%
- Name This Game: 277%
- Krull: 246%
- Assault: 232%
- Road Runner: 224%
- Kangaroo: 216%
- Tennis: 145%
- Space Invaders: 143%
- Beam Rider: 119%
- Tutankham: 112%
- Kung-Fu Master: 102%
- Freeway: 102%
- Time Pilot: 100%
- Enduro: 97%
- Fishing Derby: 93%
- Up and Down: 92%
- Ice Hockey: 78%
- O’Bert: 76%
- H.E.R.O.: 76%
- Asterix: 69%
- Battle Zone: 67%
- Wizard of Wor: 67%
- Chopper Command: 64%
- Centipede: 62%
- Bank Heist: 57%
- River Raid: 57%
- Amidar: 43%
- Alien: 42%
- Venture: 32%
- Seasteal: 25%
- Double Dunk: 17%
- Bowling: 14%
- Ms. Pacman: 13%
- Asteroids: 7%
- Frostbite: 6%
- Gravitar: 5%
- Private Eye: 2%
- Montezuma’s Revenge: 0%
DQN Variants in Minecraft

• Challenges in environments
 • Partial observability (first-person visual observations)
 • Delayed rewards
 • High-dimensional perception

• Combine DQN with memory network to solve this kind of task
Other Games

• First-person shooter games

• Car racing games
Deep RL in Go

• Use supervised learning followed by deep RL
• Falls in the category of actor-critic framework
 • Use policy network to select moves
 • Use value network to evaluate board positions
• The learning approach is further combined with Monte Carlo search
• It beats the human world champion
Deep RL for Classic Control Tasks

Simple tasks

Locomotion tasks

Hierarchical tasks

Suitable for benchmark various algorithms
Deep RL in Real-World Robotics
Possible Future Research Directions

• Model-free deep RL methods are data inefficient
 • Successful applications focus on game playing and simulator

• How to design more efficient deep RL method
 • Combing with model-based methods or supervised learning

• How to transfer policies trained in simulator to real-world environments

• Transfer learning and multi-task learning of similar policies